The biophysical and molecular basis of TRPV1 proton gating.

نویسندگان

  • Eduardo Aneiros
  • Lishuang Cao
  • Marianthi Papakosta
  • Edward B Stevens
  • Stephen Phillips
  • Christian Grimm
چکیده

The capsaicin receptor TRPV1, a member of the transient receptor potential family of non-selective cation channels is a polymodal nociceptor. Noxious thermal stimuli, protons, and the alkaloid irritant capsaicin open the channel. The mechanisms of heat and capsaicin activation have been linked to voltage-dependent gating in TRPV1. However, until now it was unclear whether proton activation or potentiation or both are linked to a similar voltage-dependent mechanism and which molecular determinants underlie the proton gating. Using the whole-cell patch-clamp technique, we show that protons activate and potentiate TRPV1 by shifting the voltage dependence of the activation curves towards more physiological membrane potentials. We further identified a key residue within the pore region of TRPV1, F660, to be critical for voltage-dependent proton activation and potentiation. We conclude that proton activation and potentiation of TRPV1 are both voltage dependent and that amino acid 660 is essential for proton-mediated gating of TRPV1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncoupling proton activation of vanilloid receptor TRPV1.

Multimodal gating is an essential feature of many TRP ion channels, enabling them to respond to complex cellular environments. TRPV1, a pain receptor involved in nociception at the peripheral nerve terminals, can be activated by a range of physical and chemical stimuli (e.g., capsaicin, proton, and heat) and further sensitized by proinflammatory substances. How a single receptor achieves this m...

متن کامل

Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipid...

متن کامل

A combined coarse-grained and all-atom simulation of TRPV1 channel gating and heat activation

The transient receptor potential (TRP) channels act as key sensors of various chemical and physical stimuli in eukaryotic cells. Despite years of study, the molecular mechanisms of TRP channel activation remain unclear. To elucidate the structural, dynamic, and energetic basis of gating in TRPV1 (a founding member of the TRPV subfamily), we performed coarse-grained modeling and all-atom molecul...

متن کامل

Investigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study

Background: in radiation treatment of moving targets located in thorax region of patient body, the delivered dose does not match with the planned treatment, resulting in some over and under dosage in the tumor volume, as a function of motion magnitude and frequency. Several efforts have been done to investigate the target motion effects on dose distribution in the target and surrounding normal ...

متن کامل

Kinetic and energetic analysis of thermally activated TRPV1 channels.

Thermal TRP channels are important for thermal sensation and nociception, but their gating mechanisms have remained elusive. With optically generated submillisecond temperature steps from 22°C to >60°C, we have directly measured the activation and deactivation kinetics of TRPV1 channels, and from the measurements we determined the energetics of thermal gating. We show that activation by tempera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 30 6  شماره 

صفحات  -

تاریخ انتشار 2011